How can we quantify ... the "green-ness" of code?

Who am Arne Tarara / Green Coding Solutions GmbH

- Electrical Engineer by training •
- Software-Dev 16+ years CTO / CEO / Developer
- Founder and entrepreneur of GCS with 2 software company track record
- Current: Green Coding Solutions GmbH - R&D for sustainable software solutions

Cloud Energy **Estimation for Cloud and VMs**

- The setup of the model is based on a research paper from Interact DC and the University of East London
- 90%+ Accuracy in/out-of sample
- Near 0% overhead
 - XGBoost + POSIX stream implementation

Cloud Energy

GREEN CODING;

Eco-C **Estimation in CI / CD Pipelines**

- Integration into Github / Gitlab directly
- Export to central dashboard
- Statistical comparisons over time
- PR-triggered measurements

Example for Github PRs: https://github.com/green-coding-berlin/green-metrics-tool/pull/653

Example for Django Measurements over time: https://metrics.green-coding.io/ci.html?repo=green-coding-berlin/django&branch=main&workflow=60545070

Power Hog Development Cost measurement

- Direct measurement of energy on the developer machine
- Granularity per process
- Aggregation per project
- API and drill-down option in dashboard
- Local database for quick analyses

	Name	Energy Impact ^	AVG CPU time %
(com.brave.Browser	2432076	17
2-	com.apple.Window	1958511	12
2-	berlin.green-coding	781171	2
Q	com.apple.Spotlight	570671	23
<u>}-</u>	com.apple.mail	522910	11
<u>}-</u>	com.stuntsoftware	399619	15
Ø	com.pixelmatortea	255301	11
0	com.nextcloud.desk	203930	4
	not oozia ianlin daa	1/00/1	2

GREEN CODING;

Green Metrics Tool CO2- and Energy-Measurement

- Benchmarking via Standard-Usage-Scenarios (academia based via UCB / Öko-Insitut e.V.)
- Reproducability / DevOps Integration via version control, orchestration and HW-Limits
- Dashboard with statistical comparison
- Modular / Extendable reporters for: Energy (Components, Machine), CO2 (Grid Intensity),
- SCI (ISO-Norm tbd 2024) / Blauer Engel compatible (German Eco Label)
- Cluster-Automation with Measurement-Accuracy-Control •

Online Dashboard: https://metrics.green-coding.io/index.html

Network, Memory, Temperature, Frequency, Embodied Carbon, VMs, distributed architectures ...

Agenda 18.01.2024

What quantifying tools do we have already?

- The basic tools Scaphandre, Kepler etc.
- CloudCarbonFootprint, powertop
- ecoCode / CAST
- Green Metrics Tool, Eco-Cl
- The Green Web Foundation / Green Software Foundation
- Did I miss anything?
- Definition of sustainability as a proxy for green
- Let's try a greenfield approach
- Energy-ID project
- Summary and Outlook

Before we try do a greenfield approach Let's see what others are already doing

We have finally many tools That provide plain metrics output

Host: 13.1463 W	core	dram	unco	re
Socket0 13.1463 W	10.879847 W	0.748591 W	Download	1402 W
Top 5 consumers: Power PID 10.400553 W 16621	2) plugin for the Docker Exe "stress"	CLI. er engine	9,6 MB 20,5 MB	ath is targe
2.08011 W 16610 0.166408 WRootless 2786 fo	"scaphandre" "gnome-shell"	ngine	28,5 MB 8,4 MB	a true use ca
0.0832040WJbuntub3915 0.041602WH Audio4621 _{ideo}	"Xwayland" "guake"	media server	27,6 MB 4 kB	
				Lease/scaphar

powertop List of hardware / os-settings tips

PowerTOP 2.12	Overview Idle stats Frequency stats Device stats Tunables WakeUp	
>> Bad	Enable Audio codec power management	
Bad	Runtime PM for I2C Adapter i2c-2 (i915 gmbus panel)	
Bad	Runtime PM for I2C Adapter i2c-3 (i915 gmbus dpc)	
Bad	Runtime PM for I2C Adapter i2c-0 (i915 gmbus ssc)	
Bad	Runtime PM for I2C Adapter i2c-1 (i915 gmbus vga)	
Bad	Runtime PM for I2C Adapter i2c-9 (SMBus I801 adapter at efa0)	
Bad	Runtime PM for I2C Adapter i2c-4 (i915 gmbus dpb)	
Bad	Runtime PM for I2C Adapter i2c-5 (i915 gmbus dpd)	
Bad	Runtime PM for port ata3 of PCI device: Intel Corporation 8 Series SATA Controller 1 [AHCI mode]	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series SATA Controller 1 [AHCI mode]	
Bad	Runtime PM for port atal of PCI device: Intel Corporation 8 Series SATA Controller 1 [AHCI mode]	
Bad	Runtime PM for disk sda	
Bad	Runtime PM for disk sdb	
Bad	Runtime PM for PCI Device Intel Corporation Wireless 7260	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series USB EHCI #1	
Bad	Runtime PM for PCI Device Intel Corporation Haswell-ULT Integrated Graphics Controller	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series USB xHCI HC	
Bad	Runtime PM for PCI Device Intel Corporation Haswell-ULT HD Audio Controller	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series LPC Controller	
Bad	Runtime PM for PCI Device Realtek Semiconductor Co., Ltd. RTS5227 PCI Express Card Reader	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series HD Audio Controller	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series HECI #0	
Bad	Runtime PM for PCI Device Intel Corporation Ethernet Connection I218-LM	
Bad	Runtime PM for PCI Device Intel Corporation 8 Series SMBus Controller	
Bad	Runtime PM for PCI Device Intel Corporation Haswell-ULT DRAM Controller	
Bad	Runtime PM for port ata2 of PCI device: Intel Corporation 8 Series SATA Controller 1 [AHCI mode]	
Good	Enable SATA link power management for host1	
Good	VM writeback timeout	
Good	Enable SATA link power management for host0	
Good	Enable SATA link power management for host2	
Good	NMI watchdog should be turned off	

Cloud Carbon Footprint Provides Recommendations in Demo - Do they work?

Cloud Carbon Footprint				RECOMMENDATIONS		
Cloud Providers: 4 of 4	Accounts	: 16 of 16 🛛 👻	Regions: 9 of 9	Rec	commendation De	etails
		CO2e Units	metric tons kilograms	Cloud Provider		GCP
				Account Name		gcp account 4
AWS	aws account 3	us-west-2	Delete	Account ID		gcp account 4
AWS	aws account 4	us-west-1	Delete	Region		us-east1
				Resource Name		test-instance-9
GCP	gcp account 0	us-west1	DELETE_IMAGE	Resource ID	8	928403120086348000
GCP	gcp account 1	us-west1	SNAPSHOT_AND_DEL	R	ecommendation Ty	/ре
GCP	gcp account 2	us-west1	CHANGE_MACHINE_T	D	STOP_VM	tail
GCP	gcp account 3	us-east1	DELETE_ADDRESS	Save cost by performing a STOP_VM for instance: test- instance-9		for instance: test-
GCP	gcp account 4	us-west2	DELETE_DISK			
GCP	gcp account 2	us-east1	STOP_VM	Cost Savings (USD)	CO2e Savings (Metric Tons)	Energy Savings (kilowatt hours)
0.05				0	0	0
000	ann annaitht					

Anwendungsfall Web: Statische Analyse Eco-Code / CAST etc.

• Based on recommendations from science and the French position paper Numérique Responsable

- No proven effect in larger software projects
- Recommendations such as i++ instead of ++i are often identical even in assembly code / byte code
- Overhead of the tools unclear

Green Code Initiative

Let's write low-carbon software

२२ 84 followers **O** France **in** company/green-code-initiative

"title": "Limit the number of returns for a SQL query", "type": "CODE_SMELL", "code": {

CAST **Static Code Scanner for Enterprise**

C Green Deficiency

Data Access Efficiency : [SQL] Avoid queries without WHERE condition 🔞

Data Access Efficiency : [SQL] Avoid queries without WHERE condition 🚱

Resource Economy : Avoid Programs not using explicitly OPEN and CLOSE for files or streams 🔞

Resource Economy : Avoid Programs not using explicitly OPEN and CLOSE for files or streams 🔞

Resource Economy : Prefer literal initialisation 🚱

Resource Economy : Avoid using 'System.gc' and 'Runtime.gc' @

Avoiding Failure : Avoid empty catch blocks 🚱

Resource Economy : Avoid using 'System.gc' and 'Runtime.gc' @

More tools ... did we miss any? Happy to talk about in Q&A !

- powertop
- powermetrics •
- <u>GreenFrame.io</u> •
- turbostat
- powerJoularX
- PAPI

Hmm, tools don't really help atm Maybe labels, organizations and norms?

The Green Web Foundation **Green Energy Label for Datacenters / Servers**

- fossil-free Internet
- Provides datasets/API for green hosting
- Label allows to show that your hosting is green
- If you are either connected to a green power plant or you have on-site generation or you buy PPAs

The Green Web Foundation is pursuing and accelerating the transition to a

geissblog.koeln is hosted green by domainFACTORY

Green Software Foundation 1/2 SCI - An approach to quantify a software

SCI = (E * I) + M per R

- (E) Energy consumption (kWh) for various components:
 - Ex. CPU/GPUs, Data storage, Memory, Network
- (I) Emission factor
- (M) Embodied emissions
 - z.B. Data from servers, laptops, mobile devices, tablets etc.

Green Software

GREEN CODING;

Green Software Foundation 2/2 https://patterns.greensoftware.foundation/

- A collection of many tips from either common sense or performance engineering
- Many can also backfire
 - "Run AI models at the edge"
 - "Reduce transmitted data"
- Many provide no guidance
 - "Use energy efficient AI models"

Green Software Foundation

Cache static data

Choose the region that is closest to users

Compress transmitted data

Delete unused storage resources

Encrypt what is necessary

Evaluate other CPU architectures

Terminate TLS at border gateway

Implement stateless design

Match your service level objectives to business needs

Match utilization requirements of virtual machines (VMs)

</>
GREEN CODING;

.

CNCF - TAG ENV Cloud Native Computing Foundation eco group

- For instance, programs written in energy efficient languages or running on more optimized runtimes are generally "greener".
 - So we use C and we are green?
- Automated scaling
- Only schedule pods when green energy is there

- Green System Architecture
- Current Sustainable Cloud Computing Landscape
 - Data centers
 - Smart Data Centers
 - Cooling / BMC
 - Methodologies
 - Measurement Methodologies
 - Observability Methodologies
 - Observability Tooling
 - Infrastructure Tooling
 - Scheduling At The Cluster Level
 - Scaling
 - On-Node Power Management Tuning

Source: <u>https://tag-env-sustainability.cncf.io/landscape/#green-system-</u> <u>architecture</u>

Blue Angel - German Eco Label 1/2 Ressource- and energy-efficient software products (DE-UZ 215)

- Software certificate from the (quite ?) well-known German eco-la
- (quite ?) well-known German eco-label
 Developed in collaboration with academia and research institutions in Germany
- Currently only for desktop applications without online functionality
- Does require measurement, but no max resource consumption
- No technical reference implementation
- Criterias -> Page 2

Good for me. Good for the environment.

Blue Angel - German Eco Label 2/2 **Ressource- and energy-efficient software products (DE-UZ 215)**

- Code should be reusable
- Code should run on 5 year old hardware
- Code should survive a Hibernate
- Code should be uninstallable without leaving files behind
- Code should not contain advertising
- Code should be documented

Good for me. Good for the environment.

Normen Mostly focus on life cycle assessment

- ISO 140001
 - The standard for a life cycle assessment. But requires methodology reference for software
- GHG Protocol Chapter 6
 - Concrete recommendations for software life cycle assessment. Even in VMs.

So do we qualify as green if we just quantify?

GREENHOUSE GAS PROTOCOL

And so much more ... Did we miss anything?

Application

VERIFIED BY SYNGENIO

Company: Ihr Unternehmen Software: Ihre Software Valid until: Datum

greensoftwaredesign.com/2023-gsd-xx Label-ID: 2023-GSD-XX

0

Gibt es ein definiertes Vorgehensmodell bei der Softwareentwicklung?

0

Werden die Stories konsequent vom Project Owner priorisiert?

0

Ist ein fachlicher Domänenspezialist unter den Entwicklern?

0

Sind die Stories klar definiert und strukturiert?

Sadly we did not find the green-ness yet

Let's maybe take a step back and try to define green through sustainability as a proxy

What is the definition of sustainability ... in a more general way

- Lebensgrundlage - Naturräume/Ökosysteme - Nachwachsende Rohstoffe
- Verschmutzung/Entsorgung

NACH-HALTIGKEIT

gerecht

Wirtschaft

trasbar

- Lebensstandard
- Bedürfnisbefriedigung
- Weltmarkt/Finanzmarkt
- Beschäftigung

Credit: <u>sdialliance.org</u> (SDIA) 25

What actually is sustainability The typical display via an ESG-like approach

Source: https://www.anevis-solutions.com/

SOCIAL

Equal opportunities, Freedom of association, Health and safety, Human rights, Customer & products resposibility, Child labour

GOVERNANCE

Business ethics, Compliance, Board independence, Executive compensation, Shareholder democracy

What actually is sustainability ESG sees sustainability as a "risk" to mitigate. Alternative view:

ESG vs Sustainability

Two distinctive perspectives

Earth Systems and Society: how to operate within a 'safe space for humanity' based upon environmental thresholds and societal foundations Quantifying the status of threshold issues such as climate, inequality and

nature

Quantifying the current performance of business and finance with respect to the safe operating space

Identifying the societal value at risk and non-financial impact of current financial performance

Business & Finance: how sustainability concerns impact enterprise value at risk

Quantifying impact of sustainability concerns on financial performance

Identifying financial investments needed to improve non-financial performance

Identifying forward risks of current business model with respect to safe operating space

Sustainability: 'Inside-out' focus on earth and social systems

ESG: 'Outside-in' focus on enterprise value

Source: https://cisweb.lancaster.ac.uk/

Sustainability - As used in this talk **Based on the definition of the UN-SDGs**

- development as the ability to :
 - abilities for their own needs"
- General understanding often says:

The Brundtland report from the United Nations (UN) defines sustainable

• "meet the present needs without compromising the future generation

• ... the ability to refill itself at a quicker rate than it is consumed / damaged ...

Let's do an intermediate summary Of goods and bads so far

What is good and bad of what we have seen so far

- Some tips mostly everybody would agree this is a green practice
 - Green Hosting. Deleting VMs you do not use. Deleting unused data ...
- Some tips require proper implementation and can backfire:
 - Location- / Time-Shifting; Switching to other algorithm; Running at edge
- Some have no data to back their claims:
 - Use i++ instead of ++i ...

Let's do a greenfield approach then What would we want from green code?

Greenfield approach What would be the most green we can think of?

- In a truly "sustainable" code it would be
 - code that consumes only so much resources as we can provide "renewably"
 - or software that we can provide for future generations in the same way
- This means we can only use so much hardware as we can also recycle
- And we can only use regenerative power
- Furthermore we would have to distribute the allowed amounts globally for every software product

• Ok ... that is a "stretch goal" for now :)

But can we find a best in class And create a gold standard?

Energy-ID project Using standardized functional benchmarks for software

	MariaDB Foundation
PostgreSQL Relational Database <i>click for details</i>	MariaDB Relational Database click for details
BADGESEnergy Cost58.93 kJ via PSU (AC)Energy Cost20.59 kJ via RAPLSCI29.46 mgCO2e/TPC-C SQL-op	BADGESEnergy Cost59.55 kJ via PSU (AC)Energy Cost21.82 kJ via RAPLSCI163.92 mgCO2e/TPC-C SQL-op
Show measurements	Show measurements

Energy-ID project Using standardized functional benchmarks for software

GREEN CODING;

Future works of Energy ID Implementation into the GMT

- Use best practices as we have for running code
 - Use resource planning
 - Check how software reacts to carbon signals
 - Check with AI models for energy hotspots.
 - Identify LoC in different software iterations Flamegraph
 - Apply AI test-optimizations and see if software gets better
- Monitor software over time if feature-addition impacts energy
- Goal: Identify what is the current most efficient code and create a gold standard

Thank you Want to know more

- Website / Blog / Newsletter: <u>https://www.green-coding.io</u>
- Demo Open Data Repository: <u>https://metrics.green-coding.io</u> •
- Our projects: <u>https://www.green-coding.io/#projects</u>
- Our case-studies: <u>https://www.green-coding.io/case-studies</u>
- Meetup Group (Berlin): <u>https://www.meetup.com/green-coding</u> •
- <u>https://www.linkedin.com/in/arne-tarara</u> / arne@green-coding.io

Eco-Compute conference The first engineering conference on sustainability in hardware & software

- We are looking for talks!
- Case studies with clients that save carbon / energy
- New tools and practices in Green Coding
- Hardware / Software
 interaction for efficiency
- https://www.eco-compute.io/call-for-speakers/

EcoCompute Conference 2024

The first engineering conference on sustainability in hardware & software

April 25 - 26 Munich, Germany

https://www.eco-compute.io/call-for-speakers/

Backup Slides

Zusammenspiel von Hardware und Software Datenbanken für Energiekennlinien durch Hardware und Konfiguration

50% Power increase at 70% uttilization

ASUSTeK Computer Inc. RS720Q-E9-RS8 (2019)

Hewlett Packard Enterprise ProLiant DL110 Gen10 Plus

Idle optimized

QuantaGrid D43K-1U (2022)

Details on RAPL The most used technology atm

- Energy measurement capabilities on most modern Intel/AMD processors
- Measure:
 - CPU Energy per Core / Package
 - RAM
 - Integrated GPU
- Software model of capacitor readings on mainboard
 - Resolution 1ms / 15.3 microJoules
- Exposed in Linux kernel through device

Source: https://pyjoules.readthedocs.io/en/stable/devices/ intel_cpu.html

GREEN CODING;

